Robin Round Operating System Assignment No 2

Q1: In 2013, which of these theories was adjusted to account for advances in technological development: Moore's law, Butter's law, Kryder's law, or the theory of planned behavior? Moore’s Law? Coined in 1965 by Intel co-founder Gordon Moore, Moore’s Law predicted the doubling of transistors per chip every two years. Originally based on only five data points, Moore’s Law turned out to be an astonishingly accurate prediction, recently celebrating its 50th anniversary to much media acclaim. It’s served as an iron rule of innovation and a figurehead for the accelerating speed of progress. With the global economy increasingly dominated by things with transistor chips inside them, the implications of Moore’s Law have been profound. However, we’ve been seeing signs for some time now that our assumptions about Moore’s Law can’t be taken for granted. As journalists like John Markoff from the New York Times have pointed out, technology companies are finding it increasingly difficult to keep pace, and while we’re still pulling off some impressive engineering feats that technically keep Moore’s Law alive, the benefits haven’t been passed on to consumers for many years now. In July 2015, for example, Intel said its two year upgrade cycle would now take 2.5 years to accommodate the new challenges. The pace of acceleration for computing power, at least, is slowing as semiconductor features approach the atomic scale. Some, like Ray Kurzweil, argue that this is nothing to worry about, since Moore’s Law is part of a much larger process of technological progress, stretching back a long way through time. Kurzweil claims that before the integrated circuit even existed, four previous ancestor technologies — electromechanical, relay, vacuum tube and transistor — all improved along the same trajectory. He formulated this as the Law of Accelerating Returns; and he believes that its logical conclusion is that one day, we will all get to live forever, finally say sorry to our departed parents, and commune in an ecstatic godlike state with the universe. It’s also worth pointing out the common (but mistaken) belief that Moore’s Law makes predictions regarding all forms of technology, when it was originally intended to apply only to semiconductor circuits. A lot of people now use Moore’s Law in place of the broader ideas put forth by Kurzweil. This is a mistake — Moore’s Law is not a scientific imperative, but rather a very accurate predictive model. Moore himself says that his predictions as applied to integrated circuits will no longer be applicable after about 2020, when integrated circuit geometry will be about one atom thick. Whether other technologies such as biochips 0r nanotechnology will come to the forefront to move digital progress forward at that point is still unclear. That’s not what this article is about though. Instead, it’s about what happens when multiple technology laws begin to take hold at the same time. I use this language loosely, since most of these ‘laws’ are, like Moore’s, better described as predictions or observations of patterns. What’s interesting is just how many of them are out there. Butters’ Law says that the amount of data coming out of an optical fiber doubles every nine months, meaning that the cost of transmitting a piece of data on an optical network decreases by half during the same time period. Unfortunately, that rate of progress doesn’t quite filter down to us as consumers Kryder’s Law is the storage equivalent of Moore’s; it states that our ability to cram as many bits as possible onto shrinking hard drives is also doubling roughly every 18 months. In 1980, Seagate introduced the world’s first 5.25-inch hard disk drive (remember floppy disks?) which could store up to 5MB of data at a price-tag of US$1500. Today, 35 years later, you can buy a a 6000GB drive from the same company for $600. That represents a million-fold increase in capacity, combined with a seven-fold decrease in price (accounting for inflation). Not even silicon chips can boast that kind of progress. Communications technologies are also progressing exponentially. If you look at the number of possible simultaneous conversations (voice or data) that can be conducted over a given area of the radio spectrum, it turns out these have doubled every 30 months for the past 104 years. This observation was made by a guy named Marty Cooper, probably the most influential man nobody has ever heard of. He’s the father of the mobile phone; the modern day equivalent of Alexander Graham Bell. While working for Motorola in the 1970s he looked at the cellular technology used in carphones and decided that this ought to be small enough to be portable. Not only did he conceive of the mobile phone (citing Star Trek as his inspiration) he subsequently led the team that developed it and brought it to market in 1983. He was also the first person in history to make a handheld cellular phone call in public. Q2: In the history of computing, why has the reduce of high speed computing power been one of the most significant technological advances? Who are the main contributors to this?

Comments

Popular posts from this blog

Magnifier- Magnifying Glass Privacy Policy

Boot Windows Oops, we get this horrible error! new method

Lab. No 8 Shortest Job First Operating System